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A statistical system of particles is considered for which interaction potentials 
are strongly singular so that the standard perturbation theory cannot be used. 
A regular procedure for constructing a mass operator is suggested, having no 
ultraviolet divergences and giving the possibility of finding corrections for any 
approximation chosen. In this procedure, the divergences connected with the 
potential singularity are eliminated with the help of a smoothing function, for 
which a simple equation is given and whose properties are analyzed both 
analytically and numerically. Two effective regularization methods are formu- 
lated, eliminating divergences occurring while iterating propagator equations. A 
continuous iterative procedure is invented for calculating observable quantities 
and the fast convergence conditions for this procedure are shown to be equivalent 
to the fixed-point conditions. 

1. I N T R O D U C T I O N  

There exists an old problem in the description of systems modeling 
condensed matter: the atoms and molecules of  which solids or liquids 
consist are not merely strongly interacting between each other, so that the 
perturbation theory becomes rather bad, but moreover the interparticle 
interaction potentials are usually strongly singular, so that the perturbation 
theory completely loses its sense insofar as all terms of the series diverge. 
The standard way to solve this problem is to use various decouplings for 
higher correlation functions or Green functions when taking account of the 
two-particle correlation to compensate the divergence of the interaction 
potential. In the case of classical liquids the pair correlation function is 
defined by the Percus-Yevick or hyperchained equations (Temperley et aL, 
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1968). For quantum systems the binary Green function may be given by 
the Bethe-Salpeter equation (Kadanoff and Baym, 1962; Negele, 1982). An 
approximation is also used in which the form of a pair correlation function 
is postulated, and the parameters entering into it are found from experiments 
or from a variational procedure (Abraham, 1979; Miller, 1980). The main 
deficiency of all these methods is that one does not know how to obtain in 
consecutive order corrections improving the accuracy of the decoupling 
chosen. 

The aim of the present paper is the construction of a regular procedure 
combining the merits of the decoupling method and of the perturbation 
theory, that is, the construction of a procedure without divergences and at 
the same time allowing one to find subsequent corrections to any initial 
approximation. Some aspects of this problem were considered earlier 
(Yukalov, 1973, 1976a, b, 1987) and applied to the description of quantum 
crystals (Yukalov, 1977, 1981, 1985; Yukalov and Zubov, 1983). Here, the 
ideas suggested earlier are developed and generalized, resulting in the 
formulation of a unified approach. 

I explain what is meant by the strongly singular potential in Section 
2, and in Section 3 give the basic definitions. In Section 4 a regular procedure 
for constructing a mass operator is suggested. This procedure has no 
divergences and at the same time it gives the possibility for defining sub- 
sequent corrections to any approximation chosen. As an illustration for the 
starting point of the procedure, the Kirkwood (1965) decoupling is general- 
ized. Then, the divergences connected with the potential singularity are 
eliminated due to the presence of a smoothing function containing short- 
range correlations. In Section 5 a simple equation is proposed for the 
smoothing function and the properties of the latter are considered analyti- 
cally as well as numerically for several matters. A solution of the propagator 
equation is analyzed in Section 6, where two effective regularizations of the 
propagator powers are formulated in order to remove the arising divergen- 
ces. The calculation of observable quantities is considered in Section 7. A 
continuous representation for the iterative procedure is invented, allowing, 
together with the renormalization group approach, reasonable results for 
any strongly interacting systems to be obtained. The fast convergence 
conditions are shown to be equivalent to the fixed-point conditions when 
the Gell-Mann-Low function is nullified. 

2. SINGULAR POTENTIALS 

Interactions between particles are often described by singular potentials 
of the form qS(r) - r -" with n > 0. How dangerous this singularity is depends 
on the integratibility of the interaction potential, that is, on the behavior 
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of the integral 

~b(r) d r =  4~- q~(r)r 2 dr 

in which a and R are the shortest and largest interparticle distances, 
respectively. Divergences can appear at long or at short distances. The first 
kind of divergence, i.e., the long-range one, corresponds to the so-called 
infrared divergences, while the second kind, i.e., the short-range one, corre- 
sponds to the ultraviolet divergences in quantum field theory (Bogolubov 
and Shirkov, 1973). In the considered case the infrared divergence occurs 
if 0 < n < 3, when 

fa ~ /oo, R-~oo 
~( r ) r  2 d r  ~ R 3 - n  - a 3-n --~ tconst,  a -* 0 

This divergence is not dangerous for the many-body problem insofar as the 
former is eliminated by taking into account long-range correlations. For 
example, in the Coulomb case these correlations yield the Debye screening, 
renormalizing the potential by the factor exp(-r~ rD) ,  where rD is the Debye 
radius. The screened potential is already integrable: 

. r 
4 ) s ( r ) r 2 d r = o w ~ < o o ,  q~,(r)= exp -7s 

The ultraviolet divergence appears if 3 < n < co, when 

f ~  ~'const, R ~  ~( r ) r  2 d r  ~ R 3 -"  - a 3-"  ~ I ~176 a ~ 0 

To eliminate this divergence, it is necessary to take into consideration 
short-range correlations. The marginal case n = 3 contains logarithmic diver- 
gences at long as well as at short distances, 

& ( r ) r 2  d r ~ ! n R - l n a ~  loo ,  a ~ O  

This case needs both the long-range and short-range correlations. 
In what follows, I concentrate on the strongly singular potentials with 

n > 3 when the short-range correlations are mostly important for eliminating 
ultraviolet divergences. Dealing with these singular potentials leads to 
difficulties because the simple perturbation theory is not applicable, while 
the decoupling methods give no possibility for finding higher approxima- 
tions. At the same time, potentials of such a strongly singular type are 
widely used when describing condensed matter; recall, for instance, the 
quite popular Lennard-Jones potential. 
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3. B A S I C  F O R M U L A S  

Consider the many-particle system with the Hamiltonian 

H ( t ) =  I tP+(r,t)[-~m-I~(r,t)]O(r,t)dr 

Y ~,+(r, t)O+(r ', t)qS(r, r')~,(r', t)O(r, t) dr  dr '  (1) +�89 

in which h - 1, the field operators satisfy the Heisenberg equation 

0 
i - -  4,(r, t) -- [~b(r, t), H( t ) ]  (2) 
at 

and the funct ion/z  (r, t) includes the chemical potential and external fields 
generally depending on time. The average of an operator ,4(t) is defined 
by the expression 

(,4) = Tr p(t),4(O) = Tr p(0),~(t) (3) 

with the statistical operator p(t). 
It is convenient to use the following abbreviations: for the functions 

(4) f ( 1 2 , . . . ,  n) ---f(rl, tl, r2, t 2 , . . . ,  rn, tn) 

and differentials 

n 
d ( 1 2 , . . . ,  n ) ~  11 dridt (5) 

i = 1  

Then, for example, as the function p.(r, t), the interaction potential, and 
the delta function one has 

/z(1) ---/z(rl, t,) 

(b(12)-= ~b(rl, r2) iS(t1- t2+0) 

8(12)--- 8 ( r l - r2 )  ~ ( t l -  t2) 

Define the causal Green functions, propagators, by the following 
expressions: the one-particle propagator is 

G(12 ) - - i (T~b( r l ,  tl)~b+(r2, t2)) (6) 

and the two-particle propagator is 

B(1234)-= -(7"@(r~, tl)~b(r2, t2)~b+(r3, t3)~b+(r4, ta)) (7) 

where T is the time-ordering operator. 
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Equations of motion can be written (Yukalov, 1976a, b) in the form 

f G-I(13)G(32) d(3) = 8(12) (8) 

Here the inverse propagator is 

i---~-0 + "--~ +/x (1 (9) G- l (12 )=[  at1 2mY2 )]8(12)-Z(12) 

and the mass operator, or the self-energy part, is 

E(12) = +i f ~b(13)B(1334)G-~(42) d(34) (10) 

The upper sign is for Bose statistics, the lower for Fermi statistics. 
The solution of any many-particle problem may be separated into the 

three consecutive stages: (1) construction of the mass operator (10) and its 
substitution into equation (8); (2) solution of equation (8) for the one- 
particle propagator; (3) calculation of observables by means of formula (3). 

4. MASS OPERATOR 

Introduce the vertex function (the triangular vertex) 

F(123) --- = 8G-1(12)/6tz (3) (IX) 

and the response function 

X(123)-- 6G(12)/tS/x (3) (12) 

Taking the variational derivative of equation (8) with respect to lz(- ) gives 

Y(12)--+iS(12)f &(13)G(33)d(3)+ilcb(13)G(14)F(423 )d(34) (13) 

where the diagonal one-particle propagator is defined by the expression 

G( l l ) -=l im lim G(12) 
r 2 ~ r  I t2-- t l  ~-~-0  

The triangular vertex (11) and response function (12) are connected with 
each other: 

F(123)=8(12)6(13)+f aE(12) 4 X(53) d(45) (14) 

x(123) = f G(14)G(52)F(453) d(45) (15) 
J 
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Comparing (13) with (10), we find the binary propagator-triangular vertex 
relation 

B(1223) = G(13)G(22) + I G(14)F(452)G(53) d(45) 

The latter together with (14) yields the equation for the binary propagator 

B(1223) = G(13)G(22) + G(lZ)G(23) 

+ f A(1453)[B(4225) - G(45)G(22)] d(45) (16) 
J 

in which 

f 8Z(56) 
A(1234)~ G ( 1 5 ) ~  G(64) d(56) (17) 

In place of the binary propagator (7) it is possible to use the dressing 
function D(1234) defined by the expression (Yukalov, 1987) 

B(1234) = f D(lZ56)G(63)G(54) d(56) 

The dressing function helps us to write down the mass operator (10) in the 
simpler form 

Z(12) = :izi f th(13)D(1324)G(43) d(34) 

The equation for the dressing function results from (16) and its definition: 

D(1234) = 6(13)8(24) • 6(14)8(23) 

f 0Z(731 + G(17) ~ G(68)[D(5264) - 6(56)6(24)] d(5678) 

If one solves these equations by means of the iteration beginning with 
= 0, as is usually adopted, then, naturally, the ultraviolet divergences arise 

owing to the strong singularity of the interaction potential. In order to avoid 
the divergences, we rearrange the equations, introducing the three-point 
correlator 

B(1223) 
C(123) - B(1223)-S A(1453)[B(4225)- G(45) G(22)] d(45) (18) 

Then (16) takes the form 

B(1223) = C(123)[G(13)G(22) �9 G(lZ)G(23)] (19) 
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The system of equations (10) and (17)-(19) will be solved following the 

Bo > C1 ~B1 ~ C2 ~B2 

I T Y l 
~'1 ;' AlE2 ~ A 2 2 ~ 3  ) " " " 

iteration scheme 

As a zeroth approximation here one could take any decoupling for the 
binary propagator which does not lead to divergences. In the case of  an 
equilibrium classical system Kirkwood (1965) suggested a simple decoupling 
for the two-particle correlation function 

f2(r, r') =fl(r)fl(r ')s(]r- r']) 

where fl(r) is the one-particle distribution function and s(r) is the function 
describing short-range interparticle correlations. The Kirkwood decoupling 
can be generalized to the quantum case for the propagators, taking account 
of their symmetry properties: 

Bo(1234) = s(12)[G(14)G(23)+ G(13) G(24)] 

Starting from this zeroth iteration and using the iteration scheme given 
above, one can obtain any consecutive approximations for the mass 
operator. So, in first order one gets 

E~(12) = • f 4S(13)G(33) d(3)+ iqS(12)G(12) 

A~(1234) = • f G(15)f(52)G(54) d(5)+ iG(12)c~(23)G(34) 

where the following notation is introduced: 

~(12) -= s(12)4, (12) (20) 

It is important that here as well as at any other iteration step the initial 
singular potential q5(12) always stands near the short-range correlation 
function s(12) that smooths its singularities, making the smoothed potential 
(20) integrable. Therefore, s(12) may be called the smoothing function. To 
write down the mass operator in the second approximation, we invoke the 
formal notation 

Bo = sGG, s = •177 A1 = •  

allowing us to simplify the formulas. Then, 

• id~GGG 
s  sGG • iGd~G( G G -  sGG) 
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Again we make sure that the interaction potential enters here into the 
smoothed combination (20). 

5. SMOOTHED FUNCTION 

Kirkwood (1965) proposed to define the short-range correlation func- 
tion from experiments on light scattering. However, this inclusion of 
phenomenological functions into the theory reduces the value of the latter. 
In what follows I suggest a theoretical construction of the smoothing 
function. 

General properties of the functions describing pair correlations have 
been thoroughly investigated by Coleman (1963, 1965). In our case, the 
smoothing function, according to its definition, has to be real and symmetric: 

s(12) = s*(12) = s(21) (21) 

The correlation between particles at large distances should disappear, while 
at short distances the smoothing function must tend to zero in order to 
compensate the divergence of the interaction potential: 

0, (r12-= I t , -  r2l) (22) 
r12 0 

s(12) = 1, r12--> ~ 

It is supposed that the interaction potential approaches zero as r,2--> oo. This 
potential usually depends solely on the coordinate difference r~2, 

6( r l ,  r2) = q~(rl2) 

As the properties of the smoothing function are guided by those of the 
interaction potential, it seems natural to shape the smoothing function in 
the spherically symmetric form 

s(12) x f 1~(12)12r~2 d~2 = s(r12) (23) 

where f~2 is the spherical angle relative to the coordinate r2, the function 
q~(12) being defined by minimizing the two-particle energy 

E~2 = [ ~*(12)H(12)~(12) dr1 dr2 (24) 
3 

in which 

H(12) = + 05(r12) 
2m 2m 

is the two-particle Hamiltonian. 
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Note that ~(12)  is not the two-particle wave function in the literal 
meaning, as the extremum condition 

8E12/6~*(12) = 0 

does not include the usual normalization condition. The resulting equation 

H(12)~(12)  =0  

differs from the Schr6dinger equation by the right-hand side. The constants 
uniquely defining q~(12) are to be found from the asymptotic condition 
(22). In the variables 

r = r I -- r2, R = �89 + r2) 

the function ~(12)  factorizes: 

�9 (12) = ~ (R)  Y(O, q~)x(r)/r 

where [~(R) I -  const, Y(O, ~p) is the spherical function, and x(r) is given 
by the equation 

d2x(r) 
dr 2 mg~(r)x(r) = 0 (25) 

All this yields the smoothing function (23), 

s(r) = Ix(r)] 2 = x2(r) (26) 

As an illustration, we make concrete the behavior of the smoothing 
function for a potential with the asymptotic properties 

~b(r)_ 4e J'~ (o'/r) n, r~O (n>k>3) 
[ - ( o ' / r )  k , r ~ o o  

In this case, equation (25) at short distances becomes 

d2x 4me x=O ( r ~ 0 )  
dr 2 

The corresponding asymptotic solution is of  the form 

x (  r ) = ..1/2 ~.<x~ �9 l-. , tz 

where 7/x) is the cylindrical function with 

/ z ~  n - - 2 '  x~ -  

[ 4 12/(n-2) 
K. ~ or (n --2)A , A ---- (me~r2) -'/2 
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K, is the correlation length, and A is the De Boer parameter. The cylindrical 
function 

Z(• ) = C 1 J ~ X )  f f  - C2N(x)  

is a linear combination of the Bessel function J~(.) and the Neumann 
function N,  (.). Owing to the asymptotic condition 

txrr2 4) 
and choosing the bounded expression for the solution, we get 

x ( r ) - C r " / 4 e x p [ -  ( ~ )  (n--2)/2] 

For the smoothing function (26) we obtain 

s ( r )  ~ C2r n/2 exp [ - 2 ( ~ e )  (n-2)/2 ] -  - - - (r--, 0) 

At large distances equation (25) transforms into 

d2X , , [ ~ k 

The asymptotic solution of the equation written above is 

x(r) = r'/22~(z) 
where 

2~(z) = c3L(z) + c4J_.(z) 
1 

p ~  
k - 2 '  

In accordance with the asymptote 

(z/2)~ [ 
J.(z) F ( I + u )  1 

(Ixl >> 1) 

(27) 

x2 ] 
4(1 + v) (Izl << 1) 

in which v < 1 for k > 3 and F(. ) is the gamma function, we have 

x(r)-~C 1 4(k-1) 

Condition (22) shows that C = 1. Therefore, the smoothing function (26) is 

2(k - 1) (r -+ oo) (28) 
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The constant C in expression (27) can be found when sewing together the 
solutions for x(r)  at intermediate distances. 

In the theory of condensed matter the Lennard-Jones potential 

is often used, having the minimum 

at the point 

qS(ro)=_4enZk  (klk/ (n-k)  
n \ n /  

and for r << ro as well as for r >> ro showing the same asymptotic properties 
as just examined. Especially popular is the potential with n = 12, k --- 6. Then 

~b(ro) = --t~, ro = 21/60- (n = 12, k = 6) 

The asymptotic expressions (27) and (28) for the smoothing function become 

s(r) ~- C2r 6 exp - 2  , (r<< ro) (29) 

and 

s(r)----- 1--~ ( ~ )  4 (r >> ro) (30) 

with the correlation lengths 

K 12 = ~ K 6  - -  

To check the behavior of the smoothing function for the whole range 
of the dimensionless variable r/o-, equation (25) has been solved numeri- 
cally. The 12-6 Lennard-Jones potential has been taken corresponding to 
the following inert-group elements and polarized hydrogen, deuterium, and 
tritium, whose De Boer parameters A are written in the parentheses: 

3He (0.494), He (0.430), 6He (0.347) 

Ne (0.092), Ar (0.029), Kr (0.016), Xe (0.010) 

H~' (0.740), DT (0.523), T~' (0.428) 
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At short and large distances numerical calculations are in agreement with 
the asymptotes (29) and (30). At intermediate distances the smoothing 
function (26) has been found to increase monotonically together with the 
variable r/o'. 

In all the cases considered the smoothing function s(r) exponentially 
tends to zero as r-~ 0 when 4~(r)~ o0; this compensates the divergence of 
the interaction potential, so that the smoothed potential 

d?( r) = s( r)c~( r) 

becomes integrable. 
There exist other variational methods for constructing short-range 

correlation functions. A review of these methods has been done by Guyer 
(1969). Those methods are based on the minimization of the total N-particle 
energy of the system, which leads to very complicated equations. The method 
presented here is much simpler because of the minimization of only the 
two-particle energy (24). At the same time, the smoothing function found 
satisfies all conditions needed. 

6. PROPAGATOR EQUATION 

After the mass operator is constructed according to the previous sections 
it is to be substituted in the equation of motion (8). The latter may be 
rewritten in the Dyson form 

where 

G(12) = G0(12) + I A(13)G(32) d(3) 

A(12) = f Go(13)[X(32)-Xo(32)] d(3) 

(31) 

and Xo(12) is an arbitrary mass operator to which the propagator (3o(12) 
corresponds. 

The standard perturbation theory has to do with the iteration of 
equation (31) beginning from ~o=0 when Go is the propagator of free 
particles. However, for strongly interacting particles this procedure would 
be wrong. Then, one should take for the zeroth approximation some solvable 
problem modeling the main physical peculiarities of the considered system. 
To improve the convergence of the iterative sequence, we define the function 

G(12) 
R(12) = G(12) " I  A(13)G(32) d(3) (33) 

(32) 
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Equation (31) takes the form 

G(12) = R(12)Go(12) (34) 

The system of equations (33) and (34) is to be iterated following the scheme 

Go ~ R1 ~ G1 ~ R2~ G2~" �9 �9 (35) 

When iterating according to the scheme (35), some technical difficulties 
occur. There are divergences similar to those appearing in quantum field 
theory. Let us explain the origin of these divergences in our case and show 
how to eliminate them. 

Considering an equilibrium system, the propagator of the zeroth 
approximation is usually represented as the expansion 

G0(12) = f Go(e, t12)~b~(rl)q,*(rz)J(e) de (36) 

over some orthonormalized wave functions forming a complete basis, 

I O*(r)O~(r')J(e) de = 8 ( r - r ' )  

In expansion (36), 

Go(e, t) = -i{19(t)[1 :t: n(e)] • @ ( - t ) n ( e ) }  e -it '  (37) 

and 

1, t > 0  
|  0, t < 0  

1 
n(  e ) = t12 = tl - t2 e ~e ~ l ' 

/3 is the inverse temperature. The iterative procedure (35) involves propa- 
gator powers G~'(e,  t),  where m i>2. Integrals containing these powers 
diverge. The appearance of these divergences is quite understandable. In 
fact, the propagator Go(e, t) is not the usual function, but is a distribution 
(generalized function). The power G g ( e ,  t) is a product of distributions, 
and it is known that these products need to be defined correctly. In the 
quantum-field perturbation theory one eliminates similar divergences by 
invoking regularization procedures of the Pauli-Willars type (Bogolubov 
and Shirkov, 1973). For the quantum-statistical perturbation theory it is 
also possible to define an analogous regularization procedure (Yukalov, 
1976a, b, 1979) introducing the expression 

G~'(e,  t )=  lim fi Go(ej,  t) (38) 
e i ~ e  j =  1 
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where the limit is supposed to be taken only after the calculation of the 
corresponding integrals. The regularization with the help of condition (38) 
leads to rather tedious computations with bulky intermediate expressions. 
It can be shown (Yukalov, 1981) that there is another way of regulation 
giving the same results as (38) but in a shorter and more elegant way. The 
second method is based on the representation of the propagator power by 
the formula 

i d m-1 
G~(e, t ) -  - ( m - 1 ) !  de " - l  { |  e -i~ (39) 

The Fourier transform 

~o) = I G0(e, t) e "~ at O0(~, 

for expression (39) gives 

~ m :r  ( 4 0 )  Go (~, o~) ~ 1 • n(~o) n(~o) 
( w - e + i 0 )  m ( w - e - i 0 )  m 

which clarifies the meaning of the product of distributions with coinciding 
poles. 

7. OBSERVABLE QUANTITIES 

When the propagators are found in some approximation, it remains to 
calculate the observable quantities as the averages of the corresponding 
operators (3). In this section I propose a method allowing one to increase 
greatly the accuracy of these calculations. This method is especially useful 
for systems with strong interparticle interactions. 

Let us choose for the zeroth approximation of the mass operator ~o 
an expression containing a set of trial parameters z. Consequently, the 
zeroth propagator Go and all other successive propagators Gk also depend 
on this set z. Observable quantities calculated by means of these propagators 
Gk naturally depend on the trial parameters z as well. Introduce the notation 
Ak+l(z) for the approximate value of an observable quantity (A)k calculated 
with the use of the k-time iterated propagator Gk. So the value Al(z)  
corresponds to Go; the value Ag(z), to G1; etc. In this way we have the 
sequence {Ak(z)} composed of the elements 

Ak+l(z)=(A)k ( k =  1 , 2 , . . . )  (41) 

The iterative procedure is of course discrete. However, it is possible 
to generalize it formally to a continuous case by invoking a kind of analytical 
continuation. For doing this, define the function A(t, z) depending on the 
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continuous variable t c  [1, co) so that when the variable t passes through 
the discrete points t = k; then 

A(k, z) = ak(z) (42) 

Define the function z(A) by the equation 

Al(z) = A (43) 

Introduce the function 

.4(t, A) =-- A( t, z(A) ) (44) 

having by definition (43) the property 

ft.(l, A) = A (45) 

The accuracy of calculations for observable quantities in the case of  
strongly interacting particles can be sufficiently improved when recurrent 
relations connecting Ak(Z) with Ak+l(z) are known. Then, one could use 
the renormalization group method and find renormalized values for observ- 
able quantities that are much more correct as compared with the approxima- 
tion (41) of  the simple iterative procedure. 

Generally speaking, changing the iterative scheme or zeroth iteration, 
one is able to reconstruct an iterative procedure in an infinite number of 
ways. But for any of the ways a common peculiarity holds true (Yukalov, 
1988): the terms of a convergent sequence with the first approximation (43) 
that is close to the exact result approximately satisfy the self-similar recurrent 
relation 

fi~(At, A) = / ( ( t ,  ft.(A, A)) (46) 

in which A -> 1, t -  > 1. It is not difficult to check this statement. Due to the 
convergence of the iterative procedure, there exists a saturation point ts 
such that 

A(At, A ) ~ A ( t , A )  (A --> 1, t----- ts) 

Because of the supposition that the first approximation (43) is already close 
to the saturation point, we have t, ~ 1 and 

/((A, A) ~ A (A --> 1, t3 ~ 1) 

Thus, we make sure that equation (46) is approximately valid. 
Differentiating (46) over t and putting t ~  1, A ~ t, we come to the 

differential renormalization-group equation 

O A ( t ,  A )  
- -  - f i ( , 4 (  t, a ) ) (47) 

01n t 
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in which  

Yukalov 

[3(A) - afi~(t, A ~ ) I [  (48) 
Ot I ~=I 

is the Gell-Mann-Low function. Integrating (47), we get 

f ~ dA'  
A [3(A' ) - ln  t 

As is usual in the renormalization-group method, the Gell-Mann-Low 
function can be found only approximately. In our case the continuous 
derivative with respect to t is to be replaced by the finite difference 

OA(t, A)  --- Al([ t] + 1, A ) - , 4 ( [  t], A) 
Ot 

where [t] means the whole part of t. Therefore, 

OA(t, A) I 
A(2, z (A ) )  - A(1, z ( A ) )  

Ot t = ~  

The Gell-Mann-Low function (48) takes the form 

[3 (A)  = A2 (x (A )  ) - A (49) 

Here the properties (42)-(45) have been used. 
Owing to the assumption about the convergence of the iterative 

procedure considered, there is a saturation point k~ such that with any 
preassigned accuracy 

Ak~+l(z)= Ak,(Z) 

Consequently, when the variable t approaches the saturation point q ~ k~, 
the function fi~(t, A) tends to the value called the fixed point 

As = fi.(ts, A) 

not depending on t_> ts. We have that 

OA(t, A)  
- - - - , 0  ( t ~ t ~ )  

Ot 

From this and from equation (47) it follows that the Gell-Mann-Low 
function taken at the fixed point A~ is equal to zero: 

~ ( ~ ( t . a ) ) = ~ ( a s ) = O  

Substituting here the representation of the function (49), we obtain 

A2(zs) = al(zs) ,  z~ =- z (as )  (50) 
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Equation (50) defining in a self-consistent way the trial parameters is the 
criterion for the initial approximation (43) to be close to the exact result. 

Equations equivalent to (50) have been suggested (Yukalov, 1976a, b) 
and used for describing quantum crystals (Yukalov, 1977, 1981, 1985; 
Yukalov and Zubov, 1983). As is evident, these equations may be called, 
equally either the self-consistency conditions or fast-convergence condi- 
tions, as they permit the self-consistent definition of trial parameters z 
entering into the zeroth approximation of the propagator Go guaranteeing 
by this the fast convergence of the iterative procedure for observable 
quantities. In particular cases, when z is a set of v parameters, z= 
{zili = 1, 2 . . . .  , v}, it is necessary to impose v equations of the type (50) 
for the same number of different operators that are most important in each 
situation. 

The principal novelty of the present section is in the proof that equation 
(50) has the meaning of the fixed-point condition. It is just this fact that 
explains why this condition really improves the convergence of the iterative 
procedure. 
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